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The Klein–Gordon system describing three scalar particles without interaction is cast
into a new form by transformation of the momenta. Two redundant degrees of freedom
are eliminated; we are left with a covariant equation for a reduced wave function with
three-dimensional arguments. This new formulation of the mass-shell constraints is
equivalent to the original KG system in a sector characterized by positivity of the
energies and, if the mass differences are not too large, by a moderately relativistic
regime. Introducing mutual interactions provides a model which is (at least for three
equal masses) tractable and admits a reasonable nonrelativistic limit.

KEY WORDS: relativistic wave equations; mass-shell constraints; three-body
systems.

1. INTRODUCTION

1.1. Motivations

Relativisticparticledynamics is concerned with situations where the particles
we consider are not significantly created or annihilated, whereas other relativistic
effects must be taken into account. In principle the description of such particles
should result from a specialization of quantum field theory (QFT) to itsn-body
sector.

This line leads to the famous integral equation of Bethe and Salpeter (BS)
in the two-body case. Three-body generalizations were soon considered in the
literature (Basdevant and Omnes, 1966; Pagnamenta, 1969a,b; Taylor, 1966). More
recently (Bijtebier, 1999, 2000; Rupp and Tjon, 1992; Sammarrucaet al., 1992.
Stadler and Gross, 1997). Four-body systems have been considered also (Bijtebier,
2001). Forn > 2 however, the complexity of the BS approach seems to be almost
prohibitive as far as practical applications are concerned.

An alternative approach, based upon first principles (Bel, 1976, 1983; Droz-
Vincent, 1975, 1979; Leutwyler and Stern, 1978a,b; Llosa, 1982; Todorov, 1976)
usesn mass-shell constraints in the form of coupled wave equations where
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interaction terms can be either phenomenological or derived from QFT (Rizov
et al., 1985, Sazdjian, 1985, 1987).

This method shares with BS equation the property of manifest relativistic
invariance, realized at the price of dealing with redundant degrees of freedom,
since the arguments of the wave function are fourvectors. In the two-body case,
there is a clue for eliminating the redundant degree of freedom: the sum of wave
equations rules the dynamics, whereas their difference allows to determine how
the wave function depends on the “relative time.” This dependence turns out to be
trivial and one is left with a three-dimensional problem. In this framework, it is
possible also to deal with fermions (Crater and Van Alstine, 1983, 1987; Crater
et al., 1992; Sazdjian, 1986).

In the three-body case we have to cope with two “relative times.” These su-
perfluous degrees of freedom are present as well in the three-body versions of the
BS equation. Their elimination (or factorization) is desirable for physical inter-
pretation; it would produce (after diagonalization of the total linear momentum) a
reduced wave equation which is covariant but similar to a Schroedinger equation
with three-dimensional arguments. Unfortunately, the simple procedure utilized
in the two-body case does not work forn > 2.

An important issue ofn-body dynamics is cluster separability; but a less re-
strictive and more essential requirement isglobal separability: one must at least
recover free-particle motion whenall interactions are put equal to zero. Models vi-
olating global separability have been considered in the past (Droz-Vincent, 19852 ;
Iranzoet al., 1981, 1984), mainly for their computational simplicity, but we belive
that any reasonable formulation ofn-body dynamics must include free motion
as a limit when all the terms carrying interactions are “switched off.” Insofar as
fermions are concerned, these matters have been discussed earlier in the literature
(Bijtebier, 1990; Sazdjian, 1989).

For scalar particles with massesma, free motion can be described byn Klein–
Gordon (KG) equations, say (p2

a −m2
a)8 = 0 where8 depends on the momenta

p1, . . . pn. We can give a sharp time-like valuekα to the total linear momentum
and use the differences of these equations. In the two-body case, it follows that
the relative time (or alternatively the relative energyc

2(p1− p2) · k/
√

k2, which is
conjugate to it) arises only in a trivial factor of the wave function.

But this procedure is unable to produce any simplification as soon asn > 2.
So we face this difficulty thateven for free particles, the usual form of the equations
of motion fails to permit the elimination of superfluous degrees of freedom.

This point may seem to be academic, because a system of noninteracting
particles has no bound state, which renders a three-dimensional formulation un-
necessary. But we bear in mind the eventuality of introducing interactions that

2 In spite of the presence ofD, the 3-body wave equation proposed therein cannot be identified with
Eq. (104) of the present work. This remark also applies to Iranzoet al. (1981, 1984).
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ultimately give rise to bound states. Therefore the possibility of a reduction is
essential andshould survive in the free case.

In this paper we focus on three-body systems and we firstly consider the case
of noninteracting particles. Let us stress that the free system is not considered
on its own right, but rather as preliminary to the further introduction of mutual
interactions.

Since the KG equations as they stand do not permit a factorization of the
dependence on relative times, it is natural to transform these equations into an
equivalent system such that two superfluous degrees of freedom can be desentan-
gled from the kinematics.

An early attempt to carry out this task for an arbitrary number of particles
was made by Sazdjian several years ago (Sazdjian, 1988, 1989). Here, however,
we shall be concerned with the three-body case only, and shall take advantage of a
simplification which is not possible forn > 3. Our aim is to eliminate two degrees
of freedom in such a way that the mass-shell constraints reduce to a covariant
problem with three-dimensional arguments. Ultimate introduction of interactions
will be briefly sketched at the end. Of course, the Poincar´e invariance of kinematics
must be preserved and all particles should be treated on equal footing (democracy).
These conditions are not likely to select a unique scheme, but if we intend to make
it as simple as possible, there are not too many choices.

We perform a rearrangement of the individual coordinates (well known in
celestial mechanics) which is adapted to the consideration of relative variables.
We insist on having invertible formulas, which is necessary to make sure that the
new form of the equations of motion is equivalent to the original KG system.

Section 2 is devoted to an exposition of the notation used and of the basic
useful equations of relativistic dynamics. In Section 3 we collect known results
and perform elementary manipulations.

In Section 4, using the “heliocentric variables,” we construct in closed form
a transformation of the free-particle system and discuss under which conditions
this transformation is invertible. In Section 5, we briefly indicate how mutual
interaction could be introduced.

2. BASIC EQUATIONS, NOTATION

Units are such thath = 1 whereasc remains unspecified. We start from the
KG-system describingn particles in momentum representation

p2
a8 = m2

ac28, a, b, c = 1 . . .n (1)

where8 depends on the three four-vectorspαa . Configuration and momentum
variables are mutually conjugate: [qαa , pbβ ] = i δabδ

α
β , and so on. We make use of
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the following notation:

Q = 1

n

∑
qa, P =

∑
pa, zab = qa − qb (2)

ya = P

n
− pa (3)

Moreover it is convenient to define

Pab = pa + pb, yab = 1

2
(pa − pb) (4)

Beware thatzab is notconjugate toyab. We obviously have the following relations:

ya − yb = −(pa − pb) = −2yab (5)∑
ya = 0, 2yab+ ya − yb = 0, p̃a = −ỹa

The tilde symbol denotes projection orthogonal toPα, in other words̃ya =
∏

ya,
z̃a =

∏
za, with

∏ = δ − (P ⊗ P)/P2. Similarly, the “hat” symbol refers to the
projection orthogonal tokα, eigenvalue ofPα. For instance

ỹσa = yσa − (ya · P/P2)Pσ

ŷσa = yσa − (ya · k/k2)kσ

Heliocentric variables. The problem of “relative times” cannot be easily handled
unless we first choose a set of independentrelative variables. For this end, one
particle is arbitrarily picked up; let it be particle with label 1. With respect to
particle 1, the relative configuration variables are defined as in Iranzoet al.(1981):

zA = q1− qA (6)

where the capital labelsA, B, C run only from 2 ton. From (3) it follows thatzA

is conjugate toyA.
Let us now specialize to three-body systems; we can write

y12 = y2+ 1

2
y3, y13 = y3+ 1

2
y2 (7)

z12+ z23+ z31 = 0 (8)

Notice that Eqs. (1–5) hold true for anyn, whereas (7) and (8) are valid for
n = 3 only. It is clear thatQ, z2, z3 are independent configuration variables. In the
same wayP, y2, y3 are independent momentum variables, canonically conjugate
to them. We can use the set of canonical variablesQ, z2, z3, P, y2, y3 in place
of q1, q2, q3, p1, p2, p3, this change is trivial. In this “heliocentric” formulation,
democracy among the three particles is of course not kept manifest but can be
checked at various stages of the development. A similar rearrangement, showing
two relative momenta, is of current use in (Newtonian) celestial mechanics.
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Among the quantitiesPab we shall more specially need to evaluateP12, P13.
They are given by

P12 = 2

3
P + y3, P13 = 2

3
P + y2 (9)

We shall also need the canonical expression ofy12, y13, given by (7). It will be
convenient to replace Eqs. (1) by their sum and their differences; to this end we
define

νA = 1

2

(
m2

1−m2
A

)
so the equal-mass case is characterized by the vanishing of bothν1, ν2.

3. EQUATIONS OF MOTION

Equation (1) can obviously be written as

c2
∑

m2
a8 =

∑
p2

a8 (10)(
m2

a −m2
b

)
c28 = (p2

a − p2
b

)
8 (11)

Notice that, according to notation (4),

1

2

(
p2

a − p2
b

) = yab · Pab (12)

In Eq. (10), let us use the identity

n
n∑
1

p2 ≡ P2+
∑
a<b

(pa − pb)2 (13)

valid for any sum of n squares in a commutative algebra. We obtain

3
∑

m2c28 = P28+
∑
a<b

(pa − pb)28 (14)

In terms of the relative variables (see Eq. (7) we have another identityspecific
of the three-body problem∑

a<b

(pa − pb)2 ≡ 6
(
y2

2 + y2
3 + y2 · y3

)
(15)

Now in the r.h.s. of (15) we separate time from space according to the direction of
P, and insert the result into (14). We get∑

a<b

(pa − pb)2 = D + 6P24 (16)
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where

D = 6
(
ỹ2

2 + ỹ2
3 + ỹ2 · ỹ3

)
(17)

4 = (P2)−2[(y2 · P)2+ (y3 · P)2+ (y2 · P)(y3 · P)] (18)

Thus the sum of Eq. (1) is(
3
∑

m2c2− P2)8 = (D + 6P24
)
8 (19)

The remaining combinations of (1) can easily be written as the “difference
equations”

y12 · P128 = ν2c28, y13 · P138 = ν3c28 (20)

Now it is natural to require that8 is also eigenstate of the total momentum, say

Pα8 = kα8 (21)

for some time-like constant vectork. But (in contrast to what happens in the
two-body case) this procedure is unable of getting rid of the relative energies
cyA · k/

√
k2 conjugate to the relative timesc−1zA · k/

√
k2.

Nevertheless, we can look for a new set of canonical variables; if these vari-
ables are suitably choosen, Eq. (20) may after all result in the elimination of two
degrees of freedom.

4. ALTERNATIVE FORMULATION OF THE FREE MOTION

4.1. Transformations in Momentum Space

We shall construct a new representation of the KG system. It will involve a new
set of operatorsq′a, p′b satisfying the canonical commutation relations. Let them be
rearranged asP′, z′A, y′B by formulas similar to (2), (3), and (6). In particular

∑
y′a

vanishes andP′ =∑ p′a but we must require thatP′ = P to preserve translation
invariance. Thus

y′a =
P

n
− p′a, y′ab =

1

2
(p′a − p′b)

y′a − y′b = −(p′a − p′b) = −2y′ab

Naturally
∑

y′a ≡ 0.Notice for
∑3

1 p′2 and for
∑

a<b(p′a − p′b)2 identities similar
to (13) and (15). We obtain

y′12 = y′2+
1

2
y′3 y′13 = y′3+

1

2
y′2 (22)

y′2 =
4

3
y′12−

2

3
y′13 y′3 =

4

3
y′13−

2

3
y′12 (23)
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Define

Q′ = 1

3

∑
q′a z′A = q′1− q′A (24)

It is clear thatQ′, z′2, z′3, P, y′2, y′3 must be independent variables,y′A conjugate to
z′A, etc.

A transformation in momentum space will be enough to induce the suitable
transformation among operators. In fact we are going to construct the quantum
analog of apoint transformationin momentum space (see Appendix A).

Let us start with a wave function8(p1, p2, p3). Perform a change in the space
of its arguments

pa 7→ p′b
or equivalentlyP 7→ P′ = P andyA 7→ y′A. Instead of the old configuration vari-
ablesz= i ∂

∂y , Q = i ∂
∂P , we shall now consider

z′ = i
∂

∂y′
, Q′ = i

∂

∂P′

Since∂P/∂y′ = 0 and∂P/∂P′ = δ, the transformation formulas are as follows:

z′αA =
∂yσB
∂y′Aα

zBσ (25)

Q′α = Qα + ∂yµA
∂P′α

zAµ (26)

with summation also over (repeated) capital indices. In these formulas it is clear
that the transformation of momenta must be invertible. Beware thatQ′ may not
coincide withQ because of∂y/∂P′. In addition, we observe that the new relative
coordinates actually mix the old ones. However, we shall prove later (Section 5)
that this difficulty disappears in the large-total-mass limit.

It is in order to stress that finding the desired transformation amounts to solve
a problem in the framework ofc-numbers. The question of inverting formulas,
discussed below, is nothing but a nonlinear problem concerning the arguments
of the wave function. Since it is specified that we are dealing with momentum
representation, we shall use without confusion the same symbols for the arguments
of the wave function and themultiplicative operatorsthey define.

For a better understanding of the mathematical structure, it is perhaps rele-
vant to notice thatQ′ andz′A are “formally hermitian” in this sense that they are
symmetric operators in

L′2(R12) = L2(R12, d4P d4y′2 d4y′3)

whereasQ andzB are symmetric operators in

L2(R12) = L2(R12, d4P d4y2 d4y3)
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In contrast the momenta are symmetric operators in both senses. For mathematical
convenience we shall work with a new wave function9 = |J|1/28, whereJ is
the JacobianJ = D(p1, p2, p3)

D(p′1, p′2, p′3) always finite and nonvanishing insofar as our trans-
formation is invertible. Indeed multiplication by|J|1/2 mapsL2 ontoL′2, so8
(resp.9) belongs to the rigged-Hilbert space constructed by takingL2 (resp.L′2)
as Hilbert space. AlthoughL2 (resp.L′2) has no direct physical meaning, it allows
for representing the Poincar´e algebra and gives a rigorous status to the operators
involved in the wave equations.

Since pa are multiplicative operators, they commute withJ, so the mass
shell constraints can be written either as (1) for8 or equivalently in the form
(p2

a −m2
ac2)9 = 0, with eachpa expressed in terms ofp′b. In momentum space,

the Lorentz group is characterized by this property that it leaves all the products
pa · pb unchanged.

Provided all the p′a · p′b can be expressed as functions of pc · pd and vice
versa, the same realization of the Lorentz group can be as well characterized by
invariance of all the scalar productspc · pd. In such a situation, althoughM ′ =∑

q′ ∧ p′ may be distinct fromM =∑q ∧ p, their components span the same
Lie algebra. MoreoverJ being conserved by rotations, it follows thatM andM ′

are both symmetric inL2 and also inL′2.
Till now we have considered a large class of transformations, characterized

by Eqs. (25) and (26); the classical (nonquantum) limit of such formulas would
definepoint transformations in momentum space.

We now specialize to a transformation which allows for eliminating the su-
perfluous degrees of freedom. All we need is an invertible transformation such that

P12 · y12 = P · y′12, P13 · y13 = P · y′13 (27)

Indeed, if these relations are satisfied, (20) takes on the form

y′1A · P9 = νAc29 (28)

Then according to (23) the “difference equations” are

y′2 · P9 =
(

4

3
ν2− 2

3
ν3

)
c29 (29)

y′3 · P9 =
(

4

3
ν3− 2

3
ν2

)
c29 (30)

With help of Eq. (21) we obtain

9 = δ(Pα − kα)δ

(
y′2 · k−

4

3
ν2c2− 2

3
ν3c2

)
δ

(
y′3 · k−

4

3
ν3c2− 2

3
ν2c2

)
ψ

(31)

whereψ depends ony′2, y′3 only through their orthogonal projections onto the
three-plane orthogonal tok. One remains with the problem of determining a re-
duced (orinternal) wave functionψ , which has no more arguments than the wave
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function of a nonrelativistic problem. The dependence of the wave function on
y′A · k is now factorized out.

For simplicity we complete our transformation law by imposing that the space
projections ofy2, y3 (with respect to the rest frame) remain unchanged, say

ỹ′A = ỹA (32)

and just transform their time components in the way dictated by Eq. (27). This
choice obviously preserves Lorentz invariance; we shall prove below that it does
not destroy the democracy among particles.

In view of equation (32), and taking into account the identity

y′Aα ≡
y′A · P

P2
Pα + ỹ′Aα (33)

it is clear that our change of variables is essentially determined by (27). As they
stand, these formulas implicitly definey′2 · P andy′3 · P in terms of the old vari-
ables; but we still have to solve (27) fory′2 · P andy′3 · P in order to exhibit the
transformation in closed form.

According to (9) and (7) the left-hand sides of conditions (27) are as follows:

P12 · y12 = 2

3
y2 · P + y2 · y3+ 1

3
y3 · P + 1

2
y2

3 (34)

P13 · y13 = 2

3
y3 · P + y2 · y3+ 1

3
y2 · P + 1

2
y2

2 (35)

For the right-hand sides, Eq. (22) yields

y′12 · P =
(

y′2+
1

2
y′3

)
· P (36)

y′13 · P =
(

y′3+
1

2
y′2

)
· P (37)

Therefore the requirement that (27) is satisfied can be expressed as the linear
system

2

3
y2 · P + y2 · y3+ 1

3
y3 · P + 1

2
y2

3 =
(

y′2+
1

2
y′3

)
· P (38)

2

3
y3 · P + y2 · y3+ 1

3
y2 · P + 1

2
y2

2 =
(

y′3+
1

2
y′2

)
· P (39)

to be solved fory′2 · P andy′3 · P. The outcome of system (38) and (39) is

y′2 · P =
2

3

(
y2 · P + y2 · y3+ y2

3

)− 1

3
y2

2 (40)

y′3 · P =
2

3

(
y3 · P + y2 · y3+ y2

2

)− 1

3
y2

3 (41)
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whereto we insert the decomposition (33). This substitution, together with (32),
determines in closed form the transformation of momenta. But it remains to be
checked that this transformation is invertible.

Translation invariancewas ensured from the outset by assuming thatP′ = P.
Lorentz invarianceis preserved because all the quadratic scalar quantities

formed with the vectorsP, y′2, y′3 are scalar invariant under spacetime rotations.
Democracybetween particles is not manifest in the heliocentric notation.

Nevertheless it is not difficult to check that our way of transforming momentum
variables treats all three particles on the same footing. Indeed we first observe that
(32) entails̃y′1 = ỹ1, which amounts to finally writẽy′a = ỹa for the three particles.
Then using (12) and (4), we realize that (27) automatically implies a third relation
P23 · y23 = P · y′23.

4.2. Inversion of Formulas

Now that all components of the new momentap′a are determined we can (in
principle) evaluate the configuration variables through formulas (25) and (26). It
is essential to realize that our transformation of the momenta among themselves
must be invertible: if it were not, the transformation would not be canonical and
the new form given to the wave equations would not be equivalent with the KG
system.

Formula (25) can be written in closed form provided we are able to carry out
this inversion. We are thus faced with the problem of mapping the new momenta
back onto the old ones, which amounts to solve the system (38) and (39) now for
the unknowny2 · P, y3 · P in terms ofy′2 · P, y′3 · P, assuming this time that the
latter are given and taking (32) into account.

Positive-energy condition. The domain where (38) and (39) must be inverted
can be limited to thepositive-energy sector. So we require not only thatP is
time-like and future-oriented, but also thatevery vector pa is time-like and points
toward the future, which entailsP · pa > 0 andpa · pb > 0.

At this stage it is convenient to introduce the dimensionless quantities

ξ = y2 · P
P2

, η = y3 · P
P2

(42)

thus (18) becomes

4 = ξ2+ η2+ η · ξ (43)

The positive-energy condition above implies limitations forξ andη. Indeed we
first derive from (3)

ξ = 1

3
− P · p2

P2
, η = 1

3
− P · p3

P2
(44)
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From positivity ofP · pA we get

ξ <
1

3
, η <

1

3
(45)

On the other hand we haveP · p1 = P2− P · p2− P · p3. According to (44) this
identity readsP · p1/P2 = 1

3 + ξ + η and this expression also must be positive.
We end up with

−1

3
< ξ + η (46)

With these limitations in mind, we now turn to the inversion of system (38) and
(39). In view of the identities

yA · yB ≡ (yA · P)(yB · P)

P2
+ ỹA · ỹB

We can write

y2 · y3 = P2ξη + ỹ2 · ỹ3

y2
2 = P2ξ2+ ỹ2

2, y2
3 = P2η2+ ỹ2

3

Insert these formulas into (34) and (35), and write (27). We get

2

3
ξ + 1

3
η + ξη + η

2

2
+ ỹ2 · ỹ3

P2
+ 1

2

ỹ2
3

P2
= y′12 · P

P2
(47)

2

3
η + 1

3
ξ + ξη + ξ

2

2
+ ỹ2 · ỹ3

P2
+ 1

2

ỹ2
2

P2
= y′13 · P

P2
(48)

Because of (32) all quantities of the form̃yA · ỹB are already known.
The above system (47) and (48) is quadratic in the unknown quantitiesξ, η.

Define dimensionless quantitiesu, v through the formulas

P2u = y′12 · P −
(

ỹ2 · ỹ3+ 1

2
ỹ2

3

)
, P2v = y′13 · P −

(
ỹ2 · ỹ3+ 1

2
ỹ2

2

)
(49)

They are regarded as functions of the new momenta, sinceP andỹA coincide with
P′ and ỹ′A, respectively. Inserting (22) into (49) yields

P2u = y′2 · P +
1

2
y′3 · P − ỹ′2 · ỹ′3−

1

2
(ỹ′3)2 (50)

P2v = y′3 · P +
1

2
y′2 · P − ỹ′2 · ỹ′3−

1

2
(ỹ′2)2 (51)

The system (47) and (48) becomes

2

3
ξ + 1

3
η + ξη + η

2

2
= u (52)

2

3
η + 1

3
ξ + ξη + ξ

2

2
= v (53)
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to be solved forξ , η with u, v as in (49). Setting

3(u+ v) = σ, 3(u− v) = ε
system (52) and (53) can be cast into the form

ξ + η + 2ηξ + 1

2
(ξ2+ η2) = σ

3
(54)

1

3
ξ − 1

3
η + 1

2
(η2− ξ2) = ε

3
(55)

It is convenient to defineX = ξ + η, Y = ξ − η. When inserted into (18), this
change of variables produces

4 = 3

4
X2+ 1

4
Y2 (56)

System (54) and (55) becomes

3

4
X2+ X − 1

4
Y2 = σ

3
(57)

2Y − 3XY = 2ε (58)

The positive-energy conditions (45) and (46) demand thatX belongs to the open
interval (− 1

3, 2
3) and also thatY > −1, which in turn require thatX < 2

3(1+ ε).
Whenε = 0 a couple of obvious solutions is given byX = 2

3 (whatever isσ )
which corresponds toY = ±2

√
1− σ/3, but this possibility is ruled out by (45).

Other solutions are given byY = 0 hence

X = X± = 2

3
(−1±√1+ σ ) (59)

but the solutionX− is excluded in view of condition (46).
We now turn to the general case. The possibility that strictlyX = 2/3 being

discarded, we now solve (58)

Y = 2ε

2− 3X
(60)

and bring the result into (57). Hence a fourth-degree polynomial equation to solve
for X,

(2− 3X)2

(
3

4
X2+ X − σ

3

)
= ε2 (61)

Graphic analysis. In principle such equation can be explicitly solved by radicals.
But a graphic analysis gives a better understanding (see Fig. 1). Solving (61)
amounts to discuss how, in theX, Z plane, the parametrized curvesZ = Rσ (X) =
(2− 3X)2( 3

4 X2+ X − σ
3 ) are intersected by a straight line with trivial equation

Z = ε2 (see Appendix B.
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Fig. 1. CurvesZ = Rσ (X) for σ = −1/2, σ = 0, σ = 1/2. The straight line
Z = ε2 is represented forε2 = 1/8.

The outcome of graphic analysis is as follows.

Proposition 4.I. Provided− 3
4 < σ < 1

2 and ε is taken in the open interval
(− 1

2, 1
2), among the real solutions of the system (57) and (58) there exists a unique

one, X, Y such that X∈ (− 1
3, 2

3) and such that X reduces to X+ whenε vanishes.
Moreover we observe that X− 2

3ε remains bounded by23, ensuring that
Y > −1 as required among the positive-energy conditions.

The expressionX = S(σ, ε) for this solution could be written in closed form,
but is very complicated, except naturally for vanishingε where it is just given by
X+. For applications, we have better to use a development in powers ofε2, say

X = S(σ, ε) = X+ + ε2X(1)+ ε4X(2) · · · + ε2pX(p) + · · · (62)

All coefficientsX(p) are derived from (61) and depend onσ . We find for instance
X(1) = 4

3(X+−X−)(2−3X+)2 . Note that

S= σ

3
+ O(σ 2, ε2, εσ ) (63)

For the sake of a physical interpretation, investigating the behavior of our
formulas at largeP2 is of interest. Equations (50) and (51) show that, considered
as functions of the independent variablesy′αA , Pβ , all the quantitiesu, v, σ, ε, X, Y
are of the order of 1/|P|. We simply have

ξ = 2u− ν + O(1/P2), η = 2ν − u+ O(1/P2) (64)

Proposition I stated above ensures that the transformation from the old momenta
to the new ones is safely invertible in an open set of values given to the couple
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σ, ε. As these quantities are first integrals for free particles, their limitation to an
interval defines a sector which is invariant by the motion. Characterization of this
sector in terms of physical quantities will be discussed in the next section.

Remark . Infinitely many other domains ensuring a unique solution to (57) and
(58) could be exhibited. But we can enlarge the interval forε only at the price of
shrinking the one forσ .

4.3. Physical Conditions

In view of Eq. (28), the wave function includes a factorδ(y′12 · P − c2ν2)
δ(y′13 · P − c2ν3). The relevant domain for the arguments of9 is thus limited by
the constraintsy′1A · P = c2νA, where the masses are given from the outset. On
the mass shell, we can replacey′1A · P by c2νA in (49) or in the definitions ofσ, ε.

The particular case whereε vanishes is interesting because it arises when the
particles are mutually at rest, providedm2 = m3, which includes the special case
where all masses are equal. Moreoverε remains small insofar asν2, ν3 and the
velocitiesare not too large.

For simplicity, let us focus on the assumption thatν2, ν3 are small enough. To
keep some contact with nonrelativistic mechanics, our scheme must encompass
the caseε = 0; thus the solution which reduces toX− for vanishingε is excluded.
Since the transformation of momenta must be one-to-one, we are also obliged to
discard the solutions which reduce to the fixed point for vanishingε.

Finally we have no other choice than the solution given byX = S(σ, ε).
Let us now discuss in more details how we can manage, by simple physical

requirements, to keepσ ,εwithin admissible values allowing to apply Proposition I.
From (49) we obtain

P2σ

3
= (ν2+ ν3)c2−

(
2ỹ2 · ỹ3+ 1

2
ỹ2

2 +
1

2
ỹ2

3

)
(65)

P2 ε

3
= (ν2− ν3)c2+ 1

2

(
ỹ2

2 − ỹ2
3

)
(66)

in other words

σ = σ0− 3

P2

(
2ỹ2 · ỹ3+ 1

2
ỹ2

2 +
1

2
ỹ2

3

)
(67)

ε = ε0+ 3

2P2

(
ỹ2

2 − ỹ2
3

)
(68)

setting

σ0 = 3(ν2+ ν3)c2/P2, ε0 = 3(ν2− ν3)c2/P2 (69)
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In the domain where the arguments of9 vary, we can for instance impose a
democratic condition

|ỹ2
a| <

P2

24
(70)

We remember that̃pa = −ỹa, thus condition (70) is a statement about individual
momenta. From (70) it follows that

|σ | ≤ |σ0| + 3

P2

∣∣∣∣2ỹ2 · ỹ3+ 1

2
ỹ2

2 +
1

2
ỹ2

3

∣∣∣∣ (71)

|ε| ≤ |ε0| + 3

2P2

∣∣ỹ2
2 − ỹ2

3

∣∣ (72)

Since everỹy is space-like,|ỹA · ỹB| ≤ |ỹA||ỹB|. Hence (70) implies∣∣∣∣2ỹ2 · ỹ3+ 1

2
ỹ2

2 +
1

2
ỹ2

3

∣∣∣∣ ≤ P2

8∣∣∣∣12 ỹ2
2 −

1

2
ỹ2

3

∣∣∣∣ ≤ P2

24

Therefore

|σ − σ0| < 3

8
(73)

|ε − ε0| < 1

8
(74)

Now, provided that

|σ0| ≤ 1

8
, |ε0| ≤ 3

8
(75)

it stems from (73) and (74) thatσ andε remain within the interval (− 1
2, 1

2). To
realize this situation, we are led to restrict the squared-mass differences by the
condition (75). Then, condition (70) permits to apply Proposition I.

Untill now, we have proposed condition (70), which involves not only the
relative momenta but alsoP2. Since we consider the positive-energy sector of free
particles, it is clear that

P2 >
∑

p2
a =

∑
m2

ac2

For the sake of a simple kinematic interpretation, we have better to replace (70)
by the stronger condition ∣∣ p̃2

a

∣∣ <
1

24

∑
m2

ac2 (76)
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which is just a little more restrictive and offers the advantage of involving only
masses and spatial velocities.

Similarly, in view of (69) it is clear that, to fulfill (75), it is sufficient to demand

|ν2+ ν3| <
∑ m2

a

24
, |ν2− ν3| <

∑ m2
a

8
(77)

This approach is well-suited for the equal-mass case and remains useful when the
mass differences are not too large.

Example (Two equal masses). Assume thatmA = ρm1, hence
∑

m2
a = (1+

2ρ2)m2
1. We find that (77) is satisfied provided the square–mass ratio satisfies

23
26 < ρ2 < 25

22. It is clear that (76) is a condition on the three-dimensional velocities
with respect to the rest frame. Although it puts a bound on these quantities, it still
leaves room for a large class of relativistic motions.

Example (Three equal masses). In the equal-mass case,ma = m, thus bothνA

vanish. We are sure thatσ, ε belong to the safety interval if we demand that∣∣ p̃2
a| <

m2c2

8
(78)

Indeed positivity entails that 3m2c2 ≤ P2.

Now what does mean (78) in terms of (Newtonian) velocities? In the rest frame,
for all indices,| p̃2| = m2 w2

1−w2/c2 wherew is the Newtonian velocitydx
dt . Thus (78)

is satisfied providedw2/c2 < 1
9, which corresponds to|w| < c/3. Under this limit,

say one third of the velocity of light, we shall speak of a “moderately relativistic
regime.” For inequal masses, similar results could be derived, but the discussion
would become a bit complicated. We summarize as follows.

Proposition 4.II. Insofar as the mass differences are not too large, we keep the
range ofσ, ε under control by restrictions on the magnitude of the velocities. If
in particular we consider three equal masses, velocities under c/3 ensure that we
can invert our formulas with S(σ, ε) as in Proposition I.

All the quantities involved in condition (70) (resp. (76)) are first integrals for
free particles, thus (70) (resp. (76)) defines an invariant sector of the motion.

4.4. Individuality: New VersusOld Coordinates

As a result of our transformation of the momenta, it might be puzzling that
(besides its dependence on total momentum) each new variableq′a depends not
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only onqa (with the same labela) but also on allqb’s with b 6= a. This dependence
is expressed by the transformation formulas (25). Fortunately, we shall prove that

Proposition 4.III. Besides its dependence on the direction of P, at zeroth order
in 1/|P|, the variable z′2 depends only on z2 (resp. z′3 depends only on z3).

Proof: We develop our formulas in powers of 1/|P| and evaluatez′Aα at lowest
order.

According to (25) we need to compute the coefficients∂y
∂y′ .

Let us first prove that

∂yσB
∂y′Aα

= O(1/|P|), forA 6= B (79)

From (42) and (32) it is clear that

yα2 = ỹ′α2 + ξPα, yα3 = ỹ′α3 + ηPα (80)

hence
∂yσ2
∂y′3α

= ∂ξ

∂y′3α
Pσ (81)

∂yσ2
∂y′2α

= 5σα + ∂ξ

∂y′2α
Pσ (82)

and similar formulas for∂y3/∂y′A. We are led to evaluate the derivatives ofξ (resp.
η). According to (64) it is sufficient to differentiateu andv. With help of (50) and
(51) we get

P2 ∂u

∂y′2α
= Pα − ỹα3 (83)

P2 ∂u

∂y′3α
= 1

2
Pα − ỹα2 − ỹα3 (84)

P2 ∂v

∂y′2α
= 1

2
Pα − ỹα2 − ỹα3 (85)

P2 ∂v

∂y′3α
= Pα − ỹα2 (86)

Let us insert (84) (86) and (83) (85) into the formulas obtained by differenti-
ation of (64). We obtain

∂ξ

∂y′3α
= O(1/P2),

∂η

∂y′2α
= O(1/P2) (87)

∂ξ

∂y′2α
= 3

2

Pα

P2
+ O(1/P2) (88)



P1: FYJ

International Journal of Theoretical Physics [ijtp] pp975-ijtp-472200 October 7, 2003 20:1 Style file version May 30th, 2002

1826 Droz-Vincent

and a similar formula with∂η/∂y′3. Inserting (87) into (81), we check that∂yσ2
∂y′3αactually is of the order of 1/|P|, and the same result can be derived for∂y3/∂y′2,

which altogether proves (79).
Now we apply formula (25) and take (79) into account. Hence

z′α2 =
∂yσ2
∂y′2α

zσ2+ O(1/|P|) (89)

But in view of (82) and (88) we simply have

∂yσ2
∂y′2α

= 5σα + 3

2

Pσ Pα

P2
+ O(1/|P|)

So finally

z′α2 = z̃α2 +
3

2

(z2 · P)Pα

P2
+ O(1/|P|) (90)

and a similar expression in terms ofz′3, z3. In particular we have

z̃′2 = z̃2+ O(1/|P|), z̃′3 = z̃3+ O(1/|P|) (91)

¤

4.5. New Form of Wave Eequation

As seen in Section 4.1, the “difference equations” are (28) or equivalently
(29) and (30). According to (19) the dynamical equation (sum equation) for free
particles is (

3
∑

m2
ac2− P2

)
9 = (D + 6P24)9 (92)

Of course4 must be here considered as a function ofy′2 · P, y′3 · P, P2, ỹA. In
view of (56) and (60) we can write as well

4 = 3

4
X2+ ε2

(2− 3X)2
(93)

whereX = S(σ, ε) according to (62) and (63). We must remember thatσ, ε are
functions of the new momenta through (49).

But Eq. (28) tells thaton the mass shellwe can replacey′1A · P by νAc2 (thus
y′A replaced accordingly, see Eqs. (29) and (30)). Moreover we impose that the
total linear momentum has a sharp valuekα. Let us make this convention thatF
is the expression of anyF on the momentum-mass shell, namely

F = subs (y′1A · P = νAc2, Pα = kα, F) (94)
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using an obvious notation borrowed from Maple’s syntaxis. It is meant thaty′1A is
as in (22) and we set

k2 = M2c2 (95)

For instance, if we define

ŷ′α = y′α − (y′ · k/k2)kα

we can writeỹ′α = ŷα, therefore

D = 6[(ŷ′2)2+ (ŷ′3)2+ ŷ′2 · ŷ′3]

Moreover (49) yields

M2c2u = ν2c2−
(

ŷ2 · ŷ3+ 1

2
ŷ2

3

)
, M2c2v = ν3c2−

(
ŷ2 · ŷ3+ 1

2
ŷ2

2

)
(96)

It is noteworthy that in the case oftwo equal massesε is of the order of 1/c2

whereas forthree equal massesbothσ andε areO(1/c2).
Taking into account the mass-shell constraints and the sharp value ofPα we

derive the reduced equation(
3
∑

m2
a − M2

)
c2ψ = (D + 6M2c24)ψ (97)

Notice that, apart fromν2, ν3 that are fixed parameters,4 depends only on̂y′2, ŷ′3,
andM2. The only operators involved in (97) are multiplications by the projections
of y′A orthogonal tok, they are essentially three-dimensional. WhereasD has a
familiar form (just use the rest frame, whereŷA · ŷB = −yA · yB), it is not the case
for 4. Fortunately it can be checked that, at least for equal masses, the termc24

is in fact of the order of 1/c2. For this purpose it is convenient to set

M2c24 = 1

M2c2
0 (98)

so we end up with(
3
∑

m2
a − M2

)
c2ψ = Dψ + 6

M2c2
0ψ (99)

For three equal masses, 0 can be expanded in nonnegative powers of 1/c2

and it turns out that its zeroth-order piece is biquadratic inŷ′A.

Proof: It can be easily read off from (49) that in this caseu, v thus alsoσ , ε are
of the order of 1/c2. Getting back to system (52) and (53), one finds that

ξ = 2u− v + O(1/c4)

η = 2v − u+ O(1/c4)
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Inserting into (43) yields

4 = 3(u2+ v2− uv)+ O(1/c4) (100)

hence

M4c44 = 0(0)+ O(1/c2) (101)

0(0) = 3

4

[(
ŷ2

2

)2+ (ŷ2
3

)2+ 4
(
ŷ2 · ŷ3

)2+ 2
(
ŷ2

2 + ŷ2
3

)(
ŷ2 · ŷ3

)− (ŷ2
2

)(
ŷ2

3

)]
(102)

Thus, when allma = m, the last term in the r.h.s. of (99) can be considered as
small. ¤

Free-particle motion is now described only in terms ofŷ′ andk.
Imposing by (21) that total linear momentum is diagonal permits, through

Eq. (31), to eliminatey′A · k, where the new relative energiescy′A · k/
√

k2 are
conjugate to the new “relative times.”

It is of interest to notice that these new “relative times” are linear combinations
of the old ones with coefficients that are analytic functions of the momenta; the
reader will check it, using (25)(26)(42) and (49)(36)(37).

After reduction, the three-body kinematics has no more degrees of freedom
than in the nonrelativistic problem. But we must keep in mind that this picture is
valid only insofar as we can revert to all the initial variables, which (at least for
equal masses) is ensured for moderately relativistic velocities.

The new variablesy′A introduced in this section will be referred to as the
reducible variables.

5. HOW TO INTRODUCE INTERACTIONS

We can now consider the system (92), (29), and (30) as a starting point for
introducing mutual interactions.

To this end, we shall modify the “sum equation” (92) by a term which carries
interaction, whereas the “difference equations” (29) and (30) remain untouched.

Doing so we manage thatP remains conserved, and keep assuming that its
eigenvalue is a time-like vectork; therefore, the factorization of9 given by formula
(31) remains valid and eliminates two degrees of freedom.

The interaction potential will be written in closed form in terms of the re-
ducible coordinatesz′A, y′B, and all calculations will be carried out using these
variables.

Remark : The reducible (momentum) coordinates p′a are rearranged as to form
the quantitiesP andy′A.
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Adding interaction into (92) produces the dynamical equation(
3
∑

m2
ac2− P2

)
9 = D9 + (18V + 6P24)9 (103)

Like in the free case,D is given by (17) and4 is given by (93) in terms of
X = S(σ, ε).

The “difference equations” remain (29) and (30) like previously. Of course,
V cannot be chosen arbitrarily but it is not difficult to find a general admissible
form of V such that the dynamical equation (103) is compatible with (29) and (30).
Compatibility requires thatV commutes with the operators in the left-hand sides
of (29) and (30). For instance the interaction potentialV may depend oñz′2, z̃′3,
andP2.

NaturallyV must be Poincar´e invariant, which is realized by taking a function
of the various scalar products formed withz̃′A, z̃′B, P. Demanding that9 diago-
nalizesPα with eigenvaluekα, with k · k > 0, we can in (103) replacẽy′ by ŷ′.

Taking (29), (30), and (98) into account yields the reduced equation(
3
∑

m2
a − M2

)
c2ψ = Dψ + 18Vψ + 6

M2c2
0ψ (104)

where the reduced wave functionψ depends only onk and on the space projections
ŷ′2, ŷ′3. The only operators involved here are the projectionsẑ′A, ŷ′B. Moreoverẑ′

arises inV only.
Comparison with a standard problem of nonrelativistic quantum mechanics

becomes more easy in the rest frame, where (ẑ′A)2 = −(z′A)2 and (̂y′A)2 = −(y′A)2,
etc.

Actually solving (104) differs from a nonrelativistic problem by the last term,
which involves the momenta but does not depend on the shape of the interaction
(and survives in the free-motion limit). Still this term depends on the total squared
mass.

For simplicity, we can consider an interaction such that

18V = α12U12(z̃
′
2)+ α23U23(z̃

′
3− z̃′2)+ α31U31(z̃

′
3) (105)

whereαab are coupling constants andUab arbitrary (but Poincar´e invariant) func-
tions. In this model,U12 is independent fromq′3, etc., with cyclic permutation; the
formal input of our interaction consists in two-body potentials.

So (104) can be written as(
3
∑

m2
a − M2

)
c2ψ = Dψ + [α12U12(ẑ

′
2)+ α23U23(ẑ

′
3− ẑ′2)

+α31U31(ẑ
′
3)]ψ + 6

M2c2
0ψ (106)

A special case

U12 = (z̃′2)2, U13 = (z̃′3)2, U23 = (z̃′3− z̃′2)2 (107)

describes a three-boson harmonic oscillator.
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To handle Eq. (104) it is tempting to neglect its last term. Invoking the limit
of a large total momentum (M2→∞), as done in Droz-Vincent (2002)3 , does not
seem to permit a perturbation treatment (indeed the “small” parameter used in the
developments should be independent from the eigenvalue). We prefer to consider
developments in powers of 1/c.

5.1. Equal Masses

Assuming for simplicity thatma = m, Eq. (104) becomes

(9m2− M2)c2ψ = Dψ + 18Vψ + 6

M2c2
0ψ (108)

It will be considered as an eigenvalue problem forλby setting 6λ = (M2− 9m2)c2.
As all masses are equal, thus0 = 0(0)+ O(1/c2). At first order in 1/c2 we can
replace0 by 0(0) andM2 by 9m2 in (108). Using the rest frame, we obtain

λψ = [y2
2+ y2

3+ y2 · y3− 3V
]
ψ − 1

9m2c2
0(0)ψ (109)

Neglecting the last term yields the nonrelativistic limit (divide bym and remember
that in our formulas,V has dimension ofP2).

Taking into account the contribution of0(0) permits to calculate the first
relativistic correction.

5.2. Cluster Behavior

As pointed out by Sazdjian (1988, 1989) in any formulation of the dynamics
which makes explicit reference to total momentum, it is difficult to discuss cluster
separability. But it is reasonable to demand that thereducedequation be in a sense
separable, in order to ensure a factorization of the internal wave function when
there are noninteracting clusters.

With this requirement in mind, we can already observe that the potential (105)
is formally separablein terms of the variables z′.

But the interpretation of eachUab as a two-body term runs into a complication:
there is no evidence that the variablez′A exactly matches the cluster of particles
{1A}. A similar remark arises concerning the matching ofz′3− z′2 with cluster
{23}.

The physical interpretation of the new configuration variablesz′A is not
straightforward; they are relative variables since they commute withP, but they
suffer from this complication that the transformation formulas (25) mixz2 with
z3. Similarly (besides its dependence on total momentum) each new variableq′a
depends not only onqa (with the same label a) but also on allqb’s with b 6= a.

3 Several coefficients in the expression of0(0) written in that article must be corrected, see eq. (102)
in the present paper.
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But we can consider (91) on the momentum–mass shell. At least for three
equal masses, the only occurrence of the velocity of light is through the product
Mc, so we obtain from (91)

ẑ′2 = ẑ2+ O(1/|Mc|), ẑ′3 = ẑ3+ O(1/|Mc|) (110)

and, of course,̂z′3− ẑ′2 = ẑ3− ẑ2+ O(1/|Mc|). Thus, at leading order, the vari-
ablesẑ′A andẑA still coincide; so the potentialsUab in the reduced Eq. (106) can
be approximately considered as two-body terms.

6. CONCLUDING REMARKS

As a first step, we succeeded in constructing three mass-shell constraints
describing thefree motionof three scalar particles. In contrast to the KG system,
these new wave equations permit to eliminate two degrees of freedom and get
reduced to a covariant equation with three-dimensional arguments.

Our approach rests on a transformation of the momenta involved in the orig-
inal KG system. In contradistinction to Sazdjian’s proposal and the homographic
relations that approximate it (Eq. (13) of Sazdjian, 1989, Eq. (4.15) of Sazdjian,
1988), our transformation from the old momenta to the new ones is explicitly given
by simplequadraticformulas. Inversion of these formulas is a fourth-degree alge-
braic problem which could be (in principle) discussed and solved in closed form;
due to its complexity, approximate developments are more efficient in practical
calculations. We used a couple of identities that are specific of the three-body case;
thus an extension of the present work ton > 3 is by no means straightforward.

In the present state of the art, equivalence of the new Eq. (97) with the sum
of the original KG equations is ensuredat leastin a large sector characterized by
positive energies and conditions that involve the masses of the particles. When the
masses are not too different one from another (and in particular for equal masses),
these conditions amount to impose a bound on the velocities; but this bound is still
high enough to allow for the description of a relativistic regime.

The case of very large velocities requires further investigations. We gave here
sufficientconditions for an invertible transformation; it remains possible that a
more detailed discussion enlarges the present results. This analysis of free-body
kinematics provides us with a solid ground.

In a second step, we introducedinteractionin the “sum equation.” The model
obtained by this procedure respects Poincar´e invariance. It remains covariantly
reducible to a wave equation with three-dimensional arguments; free motion is
recovered in the absence of interaction term.

The interaction termV is formally cluster separable; actually formula (105)
is an ansatz which permits to combine two-body interactions without spoiling
the compatibility of the mass-shell constraints. True separability (in terms of the
original individual particle coordinates) is recovered only in the large-total-mass
limit.
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The two-body input of our model can be either phenomenological or moti-
vated by consideration of field theory.

When the three masses are equal, the velocity of light arises in4 through the
productM2c2, which facilitates the expansion in powers of 1/c2. At the first order,
the reduced equation is similar to a familiar Schroedinger equation supplemented
with a perturbation; insofar as the interaction is not explicitly energy-dependent
(or if this dependence is of higher order) one is left with a conventional eigenvalue
problem.

This situation provides a basis for eventually undertaking the study of cases
where the mass differences are not zero but still remain relatively small.

In the hope of applications to realistic bound states, like three-quark systems,
we plan an extension of the formalism to particles with spin. The contact with
more elaborated (but more complicated) theories, such as QED and QCD, will be
discussed in a future work.

APPENDIX A

In non-relativistic classical mechanics, canonical transformations are sym-
plectic diffeomorphisms of phase space. In general they do mixq’s and p’s.

But a point transformation(in configuration space) simply transformsq’s
among themselves, sayq′ = f (q). Then invariance of the symplectic form
(Goldstein, 1964) fully determinesp′’s in terms ofq’s and p’s. When config-
uration space is flat, theq and p variables play symmetric roles in the general
formulas of analytic mechanics, so there is no difficulty in defining as well point
transformations in momentum space (but this possibility is not usually considered
in textbooks). In this case, one transforms the momenta among themselves, and
one further determines the new variablesq′ in terms ofq’s and p’s through the
requirement that the complete transformation law is canonical.

In the position (resp. momentum) representation of quantum mechanics, a
quantum analog of point transformations in configuration (resp. momentum) space
can be generated by an invertible transformation of the arguments of the wave func-
tion. This transformation amongc-numbers obviously induces a transformation
among the multiplicative operators they define.

APPENDIX B

The polynomialRσ (X) has an obvious double rootX = 2/3 independent of
σ , and providedσ > −1, two other real roots given by (59) but, as noticed above,
the rootX− falls outside the admissible interval. All the curvesZ = Rσ (X) are
tangent to theX axis at a fixed pointX = 2/3. Forσ > −1 andε small enough,
the curve representingR(X) is four times cut by the straight lineZ = ε2. In the
limit when ε vanishes, two points of this intersection form the contact with the
X axis, and the other ones respectively reduce toX+ andX−.
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Forσ = 1
2 we find thatX+ ' 0.15, which is admissible in the sense of (45),

(46), andR1/2(X) has a local maximum atX = 1/3. This maximum is exactly14.
Forσ < 1

2, the local maximum exceeds14. Makingσ to decrease, we obtain lower
values ofX+ (which vanishes withσ ).

Forσ = − 3
4, we obtain exactlyX+ = − 1

3, and going down further is excluded
in view of (46).

Takingσ in the open interval (− 3
4, 1

2,) andX restricted by− 1
3 < X < 2

3, it
turns out that,providedε2 < 1

4, each curveZ = Rσ (X) has two points in common
with the straight lineZ = ε2 (other possible points correspond toX outside the
interval we consider). For vanishingε, one of them has its horizontal coordinate
going to coincide withX+, while the other point goes to the fixed contact point
X = 2/3, Z = 0. This analysis shows that, with our restrictions, the fourth-degree
equationRσ (X) = ε2 has two real solutions, but only one of them reduces toX+

in the limit whereε vanishes.
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