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The Klein—Gordon system describing three scalar particles without interaction is cast
into a new form by transformation of the momenta. Two redundant degrees of freedom
are eliminated; we are left with a covariant equation for a reduced wave function with
three-dimensional arguments. This new formulation of the mass-shell constraints is
equivalent to the original KG system in a sector characterized by positivity of the
energies and, if the mass differences are not too large, by a moderately relativistic
regime. Introducing mutual interactions provides a model which is (at least for three
equal masses) tractable and admits a reasonable nonrelativistic limit.

KEY WORDS: relativistic wave equations; mass-shell constraints; three-body
systems.

1. INTRODUCTION
1.1. Motivations

Relativisticparticledynamics is concerned with situations where the particles
we consider are not significantly created or annihilated, whereas other relativistic
effects must be taken into account. In principle the description of such particles
should result from a specialization of quantum field theory (QFT) to-t®dy
sector.

This line leads to the famous integral equation of Bethe and Salpeter (BS)
in the two-body case. Three-body generalizations were soon considered in the
literature (Basdevantand Omnes, 1966; Pagnamenta, 1969a,b; Taylor, 1966). More
recently (Bijtebier, 1999, 2000; Rupp and Tjon, 1992; Sammareted., 1992.
Stadler and Gross, 1997). Four-body systems have been considered also (Bijtebier,
2001). Fom > 2 however, the complexity of the BS approach seems to be almost
prohibitive as far as practical applications are concerned.

An alternative approach, based upon first principles (Bel, 1976, 1983; Droz-
Vincent, 1975, 1979; Leutwyler and Stern, 1978a,b; Llosa, 1982; Todorov, 1976)
usesn mass-shell constraints in the form of coupled wave equations where
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1810 Droz-Vincent

interaction terms can be either phenomenological or derived from QFT (Rizov
et al, 1985, Sazdjian, 1985, 1987).

This method shares with BS equation the property of manifest relativistic
invariance, realized at the price of dealing with redundant degrees of freedom,
since the arguments of the wave function are fourvectors. In the two-body case,
there is a clue for eliminating the redundant degree of freedom: the sum of wave
equations rules the dynamics, whereas their difference allows to determine how
the wave function depends on the “relative time.” This dependence turns out to be
trivial and one is left with a three-dimensional problem. In this framework, it is
possible also to deal with fermions (Crater and Van Alstine, 1983, 1987; Crater
et al, 1992; Sazdjian, 1986).

In the three-body case we have to cope with two “relative times.” These su-
perfluous degrees of freedom are present as well in the three-body versions of the
BS equation. Their elimination (or factorization) is desirable for physical inter-
pretation; it would produce (after diagonalization of the total linear momentum) a
reduced wave equation which is covariant but similar to a Schroedinger equation
with three-dimensional arguments. Unfortunately, the simple procedure utilized
in the two-body case does not work for> 2.

An important issue of-body dynamics is cluster separability; but a less re-
strictive and more essential requiremengligsbal separability: one must at least
recover free-particle motion whell interactions are put equal to zero. Models vi-
olating global separability have been considered in the past (Droz-Vinceng;1985
Iranzoet al,, 1981, 1984), mainly for their computational simplicity, but we belive
that any reasonable formulation nfbody dynamics must include free motion
as a limit when all the terms carrying interactions are “switched off.” Insofar as
fermions are concerned, these matters have been discussed earlier in the literature
(Bijtebier, 1990; Sazdjian, 1989).

For scalar particles with massmg, free motion can be described b¥lein—
Gordon (KG) equations, sayf — m2)® = 0 whered depends on the momenta
P1, ... Pn. We can give a sharp time-like valké to the total linear momentum
and use the differences of these equations. In the two-body case, it follows that
the relative time (or alternatively the relative enefgy; — py) - k/+/k2, which is
conjugate to it) arises only in a trivial factor of the wave function.

But this procedure is unable to produce any simplification as soarrag.

So we face this difficulty thaven for free particleghe usual form of the equations
of motion fails to permit the elimination of superfluous degrees of freedom.

This point may seem to be academic, because a system of noninteracting
particles has no bound state, which renders a three-dimensional formulation un-
necessary. But we bear in mind the eventuality of introducing interactions that

21n spite of the presence @, the 3-body wave equation proposed therein cannot be identified with
Eq. (104) of the present work. This remark also applies to Iratzd. (1981, 1984).
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ultimately give rise to bound states. Therefore the possibility of a reduction is
essential andhould survive in the free case

In this paper we focus on three-body systems and we firstly consider the case
of noninteracting particles. Let us stress that the free system is not considered
on its own right, but rather as preliminary to the further introduction of mutual
interactions.

Since the KG equations as they stand do not permit a factorization of the
dependence on relative times, it is natural to transform these equations into an
equivalent system such that two superfluous degrees of freedom can be desentan-
gled from the kinematics.

An early attempt to carry out this task for an arbitrary number of particles
was made by Sazdjian several years ago (Sazdjian, 1988, 1989). Here, however,
we shall be concerned with the three-body case only, and shall take advantage of a
simplification which is not possible for > 3. Our aim is to eliminate two degrees
of freedom in such a way that the mass-shell constraints reduce to a covariant
problem with three-dimensional arguments. Ultimate introduction of interactions
will be briefly sketched at the end. Of course, the Poiagarariance of kinematics
must be preserved and all particles should be treated on equal footing (democracy).
These conditions are not likely to select a unique scheme, but if we intend to make
it as simple as possible, there are not too many choices.

We perform a rearrangement of the individual coordinates (well known in
celestial mechanics) which is adapted to the consideration of relative variables.
We insist on having invertible formulas, which is necessary to make sure that the
new form of the equations of motion is equivalent to the original KG system.

Section 2 is devoted to an exposition of the notation used and of the basic
useful equations of relativistic dynamics. In Section 3 we collect known results
and perform elementary manipulations.

In Section 4, using the “heliocentric variables,” we construct in closed form
a transformation of the free-particle system and discuss under which conditions
this transformation is invertible. In Section 5, we briefly indicate how mutual
interaction could be introduced.

2. BASIC EQUATIONS, NOTATION

Units are such that = 1 whereas remains unspecified. We start from the
KG-system describing particles in momentum representation

p2® = mic’®d, ab,c=1...n D)

where ® depends on the three four-vectge$. Configuration and momentum
variables are mutually conjugateg], pns] = i 8andj, and so on. We make use of
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the following notation:

1
Q=HZQay P=Zpa, Zab =0a — Qv 2
=)
yazﬁ_pa 3

Moreover it is convenient to define

Pav= Pt Po Yoo = 5(Pa— ) @
Beware that,y, is notconjugate to/,,. We obviously have the following relations:
Ya— Yo = —(Pa— Po) = —2Yab (5)
Y ¥a=0, Xap+Ya— =0, Pa=-Va
The tilde symbol denotes projection orthogonaPtt, in other wordsj, = [ Ya,

Za = [ za, With [T = § — (P ® P)/P2. Similarly, the “hat” symbol refers to the
projection orthogonal t&“, eigenvalue of“. For instance

Y2 = Y5 — (Ya- P/P?)P?
Y2 = Y2 — (Ya- k/KOK’

Heliocentric variablesThe problem of “relative times” cannot be easily handled
unless we first choose a set of independetdtive variables For this end, one
particle is arbitrarily picked up; let it be particle with label 1. With respect to
particle 1, the relative configuration variables are defined as in Ireiredo(1981):

Zpn=01—0a (6)

where the capital labels, B, C run only from 2 ton. From (3) it follows thatza
is conjugate to/a.
Let us now specialize to three-body systems; we can write

1 1
Yiz = Y2 + 5 ¥, Y3 = Y3+ 5V (7)
Zip+ 23+ 231 =0 (8)

Notice that Egs. (1-5) hold true for amy whereas (7) and (8) are valid for

n = 3only. Itis clear that), z,, z3 are independent configuration variables. In the
same wayP, ¥, ys are independent momentum variables, canonically conjugate
to them. We can use the set of canonical varialfdez,, z3, P, y», y3 in place

of g1, 02, O3, P1, P2, P3, this change is trivial. In this “heliocentric” formulation,
democracy among the three particles is of course not kept manifest but can be
checked at various stages of the development. A similar rearrangement, showing
two relative momenta, is of current use in (Newtonian) celestial mechanics.
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Among the quantitie$,, we shall more specially need to evalufg, Pis.
They are given by

2 2
P12=§P+Y3, P13=§P+YZ 9

We shall also need the canonical expressiony;ef y13, given by (7). It will be
convenient to replace Eqgs. (1) by their sum and their differences; to this end we
define

1
VA = Q(mf - mi)

so the equal-mass case is characterized by the vanishing ofhoth

3. EQUATIONS OF MOTION

Equation (1) can obviously be written as
Y mio =) pid (10)
(m2 — mg)c?d = (p2 — p2)@ (11)

Notice that, according to notation (4),

%(pi — ;) = Yab - Pab (12)
In Eg. (10), let us use the identity
ni PP=P’+ > (Pa— )’ (13)
1 a<b
valid for any sum of n squares in a commutative algebra. We obtain
3> m*c?® = P20 + ) (pa — po)?® (14)
a<b

In terms of the relative variables (see Eq. (7) we have another ideptific
of the three-body problem

Y (Pa— Po)’ = 6(Y5 + Y5+ Y2 ¥s) (15)

a<b
Now in the r.h.s. of (15) we separate time from space according to the direction of
P, and insert the result into (14). We get

> (pa— po)* = D + 6P?E (16)

a<b
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where
D = 6(%; + 95 + ¥z ¥3) (17)
E = (P)2y2- PY’+(y3- PY’ + (2~ P)(y3- P)] (18)
Thus the sum of Eq. (1) is

(32 m2c2 — P?)® = (D + 6P28) @ (19)

The remaining combinations of (1) can easily be written as the “difference
equations”

Y12 - Plz(l) = 1)202@, Y13 Plgq) = U3C2CI> (20)
Now it is natural to require thab is also eigenstate of the total momentum, say
P*® =k*® (21)

for some time-like constant vectd: But (in contrast to what happens in the
two-body case) this procedure is unable of getting rid of the relative energies
cya - k/+/K2 conjugate to the relative times 1z, - k/vk2.

Nevertheless, we can look for a new set of canonical variables; if these vari-
ables are suitably choosen, Eq. (20) may after all result in the elimination of two
degrees of freedom.

4. ALTERNATIVE FORMULATION OF THE FREE MOTION
4.1. Transformations in Momentum Space

We shall construct a new representation of the KG system. It will involve a new
set of operatorgy, py, satisfying the canonical commutation relations. Let them be
rearranged aB’, Z,, yg by formulas similar to (2), (3), and (6). In particulat y,
vanishes and’ = " p, but we must require tha®’ = P to preserve translation
invariance. Thus

/

P
ya=ﬁ

/ / 1 / /
—Pa Yap=5(Pa— P
Ya— Yo =—(Pa— Pp) = 2
Naturallyy" y, = 0. Notice forY"3 p2and fory_,.,(p, — p,)? identities similar
to (13) and (15). We obtain
/ ] 1 / / / 1 /
Y12 = Y2+ Y3 Yi3=Ys + 5Y2 (22)

/ 4 / 2 J / 4 J 2 /
Yo = é)’lz - §Y13 Y3 = §y13 - é)’lz (23)
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Define
/ 1 / / /
Q=§ZQa Zy =0, —a (24)
Itis clear thatQ’, z,, z;, P, y;, y3 must be independent variablgg, conjugate to
Z,, etc.

A transformation in momentum space will be enough to induce the suitable
transformation among operators. In fact we are going to construct the quantum
analog of gpoint transformatiorin momentum space (see Appendix A).

Let us start with a wave functiob(py, p2, ps). Perform a change in the space
of its arguments

Pa = Py
or equivalentlyP — P’ = P andya — Y,. Instead of the old configuration vari-
ablesz =i-2, Q =i-%5, we shall now consider

ay’ ap’
.0 .0
Z=i—, Q =i
ay’ P’
Sinced P/dy’ = 0 anddP/9P’ = §, the transformation formulas are as follows:
Vg

7y = ZBo 25
AT Gy 28 (25)
: IYa
¢ =Q" Z 26

Q Q¥ + 2P/ A, (26)

with summation also over (repeated) capital indices. In these formulas it is clear
that the transformation of momenta must be invertible. Beware@hahay not
coincide withQ because ofy/dP’. In addition, we observe that the new relative
coordinates actually mix the old ones. However, we shall prove later (Section 5)
that this difficulty disappears in the large-total-mass limit.

Itis in order to stress that finding the desired transformation amounts to solve
a problem in the framework af-numbers. The question of inverting formulas,
discussed below, is nothing but a nonlinear problem concerning the arguments
of the wave function. Since it is specified that we are dealing with momentum
representation, we shall use without confusion the same symbols for the arguments
of the wave function and theultiplicative operatorsdhey define.

For a better understanding of the mathematical structure, it is perhaps rele-
vant to notice that)’ andz, are “formally hermitian” in this sense that they are
symmetric operators in

£/2(R12) — LZ(R]'Z, d4P d4Yé d4yé)
whereadQ andzg are symmetric operators in

L2(R™) = L3R, d*P d*y, dys)
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In contrast the momenta are symmetric operators in both senses. For mathematical
convenience we shall work with a new wave functign= |J|Y2®, whereJ is

the Jacobiar) = E’Egligzgz; always finite and nonvanishing insofar as our trans-
formation is invertible. Indeed multiplication by)|%/2 maps£2 onto £72, so &
(resp.¥) belongs to the rigged-Hilbert space constructed by takihresp.£'?)

as Hilbert space. Although? (resp.£'?) has no direct physical meaning, it allows

for representing the Poinaaglgebra and gives a rigorous status to the operators
involved in the wave equations.

Since p, are multiplicative operators, they commute wilh so the mass
shell constraints can be written either as (1) doror equivalently in the form
(p2 — m2c?)W = 0, with eachp, expressed in terms gf,. In momentum space,
the Lorentz group is characterized by this property that it leaves all the products
Pa - pp unchanged.

Provided all the - p, can be expressed as functions @f- pq and vice
versg the same realization of the Lorentz group can be as well characterized by
invariance of all the scalar producfs - pg. In such a situation, althoughl’ =
> g’ A p’ may be distinct fromM = > g A p, their components span the same
Lie algebra. Moreoved being conserved by rotations, it follows tHet and M’
are both symmetric i£? and also inC'2.

Till now we have considered a large class of transformations, characterized
by Egs. (25) and (26); the classical (nonquantum) limit of such formulas would
definepoint transformations in momentum space

We now specialize to a transformation which allows for eliminating the su-
perfluous degrees of freedom. All we need is an invertible transformation such that

Pi2-yio =P -y, Piz-yiz= P - Y3 (27)
Indeed, if these relations are satisfied, (20) takes on the form
Yia- PW = vac?W (28)
Then according to (23) the “difference equations” are
4 2
yé . P\I/ = <§U2 — §U3> CZ\I’ (29)
4 2
yé PV = (§U3 — §V2) CZlIJ (30)

With help of Eqg. (21) we obtain

, 4 2 , 4 2
U = §(P* — k%)8 (yz k- §VZCZ — §U3C2> 8 <y3 k— 51)302 — §"2C2> v

(1)

wherey depends ory,, y; only through their orthogonal projections onto the
three-plane orthogonal ta One remains with the problem of determining a re-
duced (oiinternal) wave functiony, which has no more arguments than the wave
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function of a nonrelativistic problem. The dependence of the wave function on
Y - K is now factorized out.

For simplicity we complete our transformation law by imposing that the space
projections ofy,, y; (with respect to the rest frame) remain unchanged, say

Ya="9a (32)

and just transform their time components in the way dictated by Eq. (27). This
choice obviously preserves Lorentz invariance; we shall prove below that it does
not destroy the democracy among patrticles.

In view of equation (32), and taking into account the identity

= APt T, (33)

it is clear that our change of variables is essentially determined by (27). As they
stand, these formulas implicitly defiryg - P andy; - P in terms of the old vari-
ables; but we still have to solve (27) fg - P andy; - P in order to exhibit the
transformation in closed form.

According to (9) and (7) the left-hand sides of conditions (27) are as follows:

2 1 1
P12'Y12=EY2'P+Y2'Y3+§Y3'P+EY§ (34)
2 1 1
Pla-y13=§y3~P+yz-y3+§Y2-P+§y§ (35)
For the right-hand sides, Eq. (22) yields
/ J 1 /
Y12'P:<y2+§y>'P (36)
/ J 1 /
Yis- P = y3+§y2 -P (37)

Therefore the requirement that (27) is satisfied can be expressed as the linear
system

2 P+ +1 P+12— ’+1’ P (38)
3Y2- Y2-Y3 3Y3' 2Y3— Yo 2Y3 :
2 1 1 o1,
§Y3'P+y2'Y3+§YZ'P+EY§=(Y?,+§V2>'P (39)

to be solved fory, - P andy; - P. The outcome of system (38) and (39) is
} 2 1
yz'P=§(Y2'P+y2'>’3+y§)—§y§ (40)

, 2 1
ya-P=§(ys-P+yz-ys+y§)—§y§ (41)
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whereto we insert the decomposition (33). This substitution, together with (32),
determines in closed form the transformation of momenta. But it remains to be
checked that this transformation is invertible.

Translation invariancevas ensured from the outset by assuming Bat P.

Lorentz invariancds preserved because all the quadratic scalar quantities
formed with the vector®, y,, y; are scalar invariant under spacetime rotations.

Democracybetween patrticles is not manifest in the heliocentric notation.
Nevertheless it is not difficult to check that our way of transforming momentum
variables treats all three particles on the same footing. Indeed we first observe that
(32) entailsy; = 1, which amounts to finally writ§, = ¥, for the three particles.
Then using (12) and (4), we realize that (27) automatically implies a third relation

Pos- Yo3 =P - yja.

4.2. Inversion of Formulas

Now that all components of the new momemtaare determined we can (in
principle) evaluate the configuration variables through formulas (25) and (26). It
is essential to realize that our transformation of the momenta among themselves
must be invertible: if it were not, the transformation would not be canonical and
the new form given to the wave equations would not be equivalent with the KG
system.

Formula (25) can be written in closed form provided we are able to carry out
this inversion. We are thus faced with the problem of mapping the new momenta
back onto the old ones, which amounts to solve the system (38) and (39) now for
the unknowny, - P, y3 - P in terms ofy, - P, y; - P, assuming this time that the
latter are given and taking (32) into account.

Positive-energy conditiomhe domain where (38) and (39) must be inverted
can be limited to thepositive-energy sectoiSo we require not only tha® is
time-like and future-oriented, but also treatery vector pis time-like and points
toward the futurewhich entailsP - p; > 0 andp, - pp > 0.

At this stage it is convenient to introduce the dimensionless quantities

y2- P y- P
F=T = (42)
thus (18) becomes
E=&+n’+n-& (43)

The positive-energy condition above implies limitations §oand». Indeed we
first derive from (3)

1 P'pg _l P‘pg

=37 1737 R

(44)
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From positivity of P - pa we get
1

1
$<§: 7’/<§ (45)

On the other hand we haw- p; = P2 — P . p, — P - ps. According to (44) this
identity readsP - p;/P? = % + & + n and this expression also must be positive.
We end up with
1
-3 <E+7 (46)

With these limitations in mind, we now turn to the inversion of system (38) and
(39). In view of the identities

P)ys-P) _
ya-yp = 2 P)ye P) ;(zyB A

We can write
Y2- Y3 =P%n+%>- ¥
i =P%2 4+, Yi=PW*+9;
Insert these formulas into (34) and (35), and write (27). We get
" S2-¥3 195 yi,-P

2 1
i s - 47
3 TRttt e Y o = T (47)
2 1 £ V2-¥3 195  yi5-P

i s - _ 48
31T Tt ST T Yo T (48)

Because of (32) all quantities of the forijn - 5 are already known.
The above system (47) and (48) is quadratic in the unknown quaritjties
Define dimensionless quantitiasv through the formulas

2 ! & 1~2 2 / I 1~2
Pu=yp, - P— Y2'y3+§y3 ) Pv =y, P— y2'Y3+§y2
(49)
They are regarded as functions of the new momenta, $trexed {5 coincide with
P’ and¥,, respectively. Inserting (22) into (49) yields

/ 1 / & 1 &/
Pu=y;- P+5Ys P—yz-y3—§(y3)2 (50)
2 / 1 / A 1 &/ \2
PV=Y3'P+§y2'P_Y2‘y3_§(Y2) (51)
The system (47) and (48) becomes
2 1 n?
—_— —_— _— = 2
Ftgntént 5 =u (52)
2 1 2
T VR (53)

3 3 2
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to be solved fog, n with u, v as in (49). Setting
3u+v) =o, Bu—v)=¢e

system (52) and (53) can be cast into the form

1
§+77+277$+§(52+772) = (54)

wlin w|Q

1 1 1
55— éﬂ‘i‘i(ﬁz—éz): (55)

It is convenient to definX = & + 7, Y = & — 5. When inserted into (18), this
change of variables produces

3 1
2= >X24 Y2 56
2% T3 (56)
System (54) and (55) becomes

3 1 o
SXZEX-ZYi= 2 57
2 T T3 S
2Y — 3XY = 2¢ (58)

The positive-energy conditions (45) and (46) demand ¥hatlongs to the open

interval (—3, £) and also tha¥ > —1, which in turn require thaX < Z(1+ ).
Whene = 0 a couple of obvious solutions is given By= % (whatever isr)

which corresponds t¥ = +2,/1 — 5/3, but this possibility is ruled out by (45).

Other solutions are given by = 0 hence
2
X =X*= §)(—u: V1+0) (59)

but the solutionX ™~ is excluded in view of condition (46).
We now turn to the general case. The possibility that strigthe 2/3 being
discarded, we now solve (58)
V- 2¢
2—-3X
and bring the resultinto (57). Hence a fourth-degree polynomial equation to solve
for X,

(60)

(2 — 3X)? (gx2 +X— 3) — 2 (61)
4 3

Graphic analysisIn principle such equation can be explicitly solved by radicals.

But a graphic analysis gives a better understanding (see Fig. 1). Solving (61)

amounts to discuss how, in tié Z plane, the parametrized curvés= R, (X) =

- 3X)2(;31X2 + X — %) are intersected by a straight line with trivial equation

Z = €? (see Appendix B.
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-0.2 0.2 0.4 0.6
-0/ 27

Fig. 1. CurvesZ = R,(X) for 0 = —1/2,0 = 0, 0 = 1/2. The straight line
Z = €2 is represented far? = 1/8.

The outcome of graphic analysis is as follows.

Proposition 4.1. Provided—% <o< % and ¢ is taken in the open interval

—%, %), among the real solutions of the system (57) and (58) there exists a unique

one, XY such that Xe (—%, %) and such that X reduces totXvhene vanishes.
Moreover we observe that X %e remains bounded bg, ensuring that

Y > —1as required among the positive-energy conditions.

The expressiolX = H(o, €) for this solution could be written in closed form,
but is very complicated, except naturally for vanishinghere it is just given by
X*. For applications, we have better to use a development in powers sdy

X = S(U, E) = Xt =+ EZX(l) + 64)((2) R GZpX(p) —+ .- (62)
All coefficients Xy, are derived from (61) and depend @nWe find for instance
4
Xw = spe—x)e-axe - Note th‘;t
S= 3 + O(0?, €2, €0) (63)

For the sake of a physical interpretation, investigating the behavior of our
formulas at largeP? is of interest. Equations (50) and (51) show that, considered
as functions of the independent variabjés P#, all the quantities, v, o, €, X, Y
are of the order of 4 P|. We simply have

E=20—v+0O(1/P), n=2v—u+O(/P? (64)

Proposition | stated above ensures that the transformation from the old momenta
to the new ones is safely invertible in an open set of values given to the couple
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o, €. As these quantities are first integrals for free particles, their limitation to an
interval defines a sector which is invariant by the motion. Characterization of this
sector in terms of physical quantities will be discussed in the next section.

Remark. Infinitely many other domains ensuring a unique solution to (57) and
(58) could be exhibited. But we can enlarge the intervakfonly at the price of
shrinking the one fos .

4.3. Physical Conditions

In view of Eq. (28), the wave function includes a factgy;, - P — c?vy)
8(y13- P — c®v3). The relevant domain for the argumentsdofs thus limited by
the constraintg/, - P = c?va, where the masses are given from the outset. On
the mass shell, we can replagg, - P by c?v, in (49) or in the definitions of, e.

The particular case whetevanishes is interesting because it arises when the
particles are mutually at rest, provided = mg, which includes the special case
where all masses are equal. Moreoyaemains small insofar as, v and the
velocitiesare not too large.

For simplicity, let us focus on the assumption thatv; are small enough. To
keep some contact with nonrelativistic mechanics, our scheme must encompass
the case& = 0; thus the solution which reducesXo for vanishinge is excluded.

Since the transformation of momenta must be one-to-one, we are also obliged to
discard the solutions which reduce to the fixed point for vanishing

Finally we have no other choice than the solution giverXoy (o, €).

Let us now discuss in more details how we can manage, by simple physical
requirements, to keep, € within admissible values allowing to apply Proposition 1.

From (49) we obtain

o " . 1. 1.
P2§ = (v2+ v3)c? — <ZY2 Y3+ Eyg + §y§> (65)
P2E — (1 — 1) + S(F — 2 (66)
3 = \2 V3 + 2(y2 y3)
in other words
3 - 1. 1.
o =Uo—a(2y2y3+§y22+§y32,) (67)
3 2 2
6=60+ﬁ(2— 5) (68)

setting

o0 = 3z + v3)c?/P?, € = 3(vo — v3)c?/P? (69)
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In the domain where the arguments wf vary, we can for instance impose a
democratic condition
P2
V2 < — 70
Yal < 24 (70)
We remember thap, = —¥,, thus condition (70) is a statement about individual
momenta. From (70) it follows that

3 .. . 1., 1
o] < lool + 55 292 I3+ 595 + 595 (71)
< 3 &2 &2 72
el < leol + 55592 — 3] (72)
Since everyy is space-like|ya - ¥s| < |Vall¥s]. Hence (70) implies
. . 1., 1. p2
‘2y2~y3+ Ry
1., 1., p2
‘?’2 — 53| =5y
Therefore
3
lo — ool < 8 (73)
1
le — €0l < 8 (74)
Now, provided that
1 3
-, z 75
loo| < 8 |€o] < 8 (75)

it stems from (73) and (74) that ande remain within the interval €3, 1). To
realize this situation, we are led to restrict the squared-mass differences by the
condition (75). Then, condition (70) permits to apply Proposition I.

Untill now, we have proposed condition (70), which involves not only the
relative momenta but als®?. Since we consider the positive-energy sector of free

particles, it is clear that
P2> Y p2=) mic?

For the sake of a simple kinematic interpretation, we have better to replace (70)
by the stronger condition

B3] < g > mEe? (76)
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which is just a little more restrictive and offers the advantage of involving only
masses and spatial velocities.
Similarly, in view of (69) it is clear that, to fulfill (75), itis sufficient to demand

SRR D SIS
V2 V3 YR V2 — V3 o

24 8
This approach is well-suited for the equal-mass case and remains useful when the
mass differences are not too large.

(77)

Example (Two equal masses). Assume thmajg = pm;, hence}_ m2 = (1 +
2,02)m2 We find that (77) is satisfied provided the square—-mass ratio satisfies
23 < p?< —g’ Itis clearthat (76) is a condition on the three-dimensional velocities
W|th respect to the rest frame. Although it puts a bound on these quantities, it still
leaves room for a large class of relativistic motions.

Example (Three equal masses). In the equal-mass eages m, thus bothva
vanish. We are sure that ¢ belong to the safety interval if we demand that

P

Indeed positivity entails thatrf’c? < P2,

m2 C2

(78)

Now what does mean (78) in terms of (Newtonian) velocities? In the rest frame,
for all indices,| p?| = m? xz > Wherew is the Newtonian veIocn)%— Thus (78)

is satisfied prowdeallz/c% =, which corresponds tiov| < ¢/3. Under this limit,

say one third of the veIOC|ty of light, we shall speak of a “moderately relativistic
regime.” For inequal masses, similar results could be derived, but the discussion
would become a bit complicated. We summarize as follows.

Proposition 4.11.  Insofar as the mass differences are not too large, we keep the
range ofo, € under control by restrictions on the magnitude of the velocities. If
in particular we consider three equal masses, velocities under c/3 ensure that we
can invert our formulas with @, €) as in Proposition I.

All the quantities involved in condition (70) (resp. (76)) are first integrals for
free particles, thus (70) (resp. (76)) defines an invariant sector of the motion.

4.4. Individuality: New VersusOld Coordinates

As a result of our transformation of the momenta, it might be puzzling that
(besides its dependence on total momentum) each new vatablepends not
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only ong, (with the same label) but also on alty,’s with b # a. This dependence
is expressed by the transformation formulas (25). Fortunately, we shall prove that

Proposition 4.1ll.  Besides its dependence on the direction of P, at zeroth order
in 1/|P|, the variable 2 depends only ornpZresp. % depends only ong}.

Proof: We develop our formulas in powers of|P| and evaluate),, at lowest
order.

According to (25) we need to compute the coefficie%i,fts

Let us first prove that

ayg

= =0(1/|P]), forA#B (79)
G A
From (42) and (32) it is clear that
2=V +&P%, vz =95 +nP” (80)
hence
Wi _ % pe (81)
Yz Y3
W _ e 95 po (82)
ayza ayZa

and similar formulas fodys/dy/,. We are led to evaluate the derivativeg gfesp.
n). According to (64) it is sufficient to differentiateandv. With help of (50) and
(51) we get

=P 83
=P V% ®4)
= P % (85)
=P % (86)

Let us insert (84) (86) and (83) (85) into the formulas obtained by differenti-
ation of (64). We obtain

0 2 an 2
= 0O(1/P?), = 0O(1/P 87
oL (1/P9) oL, (1/P9) (87)
o0& _ § p* 2
By, = 22 T OWP) (88)
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and a similar formula witt9n/dys. Inserting (87) into (81), we check thaz
actually is of the order of 4P|, and the same result can be deriveda’%/a)fg,
which altogether proves (79).

Now we apply formula (25) and take (79) into account. Hence

Ve
Z/LY _ y2

2 = 22+ O(1/|P) (89)
ayZa
But in view of (82) and (88) we simply have
ayg 3PP®
—= =TI+ ———— + O(1/|P
v + 555+ OWIP))
So finally
w | 3(z2-P)P*
=%+ 22 0% 4 op) (90)

and a similar expression in termszf zs. In particular we have

% =%+ O/|P]), % =2+ O(1/|P|) (91)

4.5. New Form of Wave Eequation

As seen in Section 4.1, the “difference equations” are (28) or equivalently
(29) and (30). According to (19) the dynamical equation (sum equation) for free
particles is

(32 m2c? — P2> W = (D + 6P2E)W (92)

Of courseE must be here considered as a functiorypf P, y; - P, P2, §a. In
view of (56) and (60) we can write as well
3 €?
E=XP4 ——
2™ T 2ax)y
whereX = (o, €) according to (62) and (63). We must remember that are
functions of the new momenta through (49).
But Eq. (28) tells thabn the mass shelve can replacg; , - P by vac? (thus
y), replaced accordingly, see Egs. (29) and (30)). Moreover we impose that the
total linear momentum has a sharp vakde Let us make this convention thit
is the expression of any on the momentum-mass shell, namely

(93)

F =subs,- P =vac?, P*=Kk* F) (94)
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using an obvious notation borrowed from Maple’s syntaxis. It is meantfhas
asin (22) and we set

k? = M?¢? (95)
For instance, if we define
Vo = Yo — (Y - k/KO)ky
we can writey” = §*, therefore
D = 6[(5)° + (95)° + 95 - ¥l
Moreover (49) yields

o1 1.
M2029=Vz02—<yz-y3+§y§), MZcZy:wcz—(yzstrEyS) (96)

It is noteworthy that in the case tfo equal massasis of the order of 1c?
whereas fothree equal massémtho ande are O(1/c?).

Taking into account the mass-shell constraints and the sharp vaRfewé
derive the reduced equation

(32 m2 — MZ) 2y = (D + 6M2C2E)y (97)

Notice that, apart fromy, v3 that are fixed parameterg,depends only of,, 5,
andM?2. The only operators involved in (97) are multiplications by the projections
of y), orthogonal tok, they are essentially three-dimensional. WherBasas a
familiar form (just use the rest frame, wherg- §5 = —ya - Yg), itis not the case
for E. Fortunately it can be checked that, at least for equal masses, thet8rm
is in fact of the order of Ac?. For this purpose it is convenient to set

1
2,2
M2CE = —o (98)
so we end up with
6
(3Zm§— M2) Y = DY + oY (99)

For three equal masse§ can be expanded in nonnegative powers a1
and it turns out that its zeroth-order piece is biquadratig,n

Proof: It can be easily read off from (49) that in this cager thus alsa, € are
of the order of 1c?. Getting back to system (52) and (53), one finds that

£=2u—v+0(1/ch
n=2v-u+ O(1/c%
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Inserting into (43) yields
E =3 +Vv*—uv) + O(1/c (100)
hence
M4c*E = I'(0) + O(1/c?) (101)

DO = 158+ (58)° + 452 96)° + 2(58 + ) (52 5e) — (53) (53]
(102)

Thus, when alim, = m, the last term in the r.h.s. of (99) can be considered as
small. O

Free-particle motion is now described only in terms/oandk.

Imposing by (21) that total linear momentum is diagonal permits, through
Eq. (31), to eliminatey,, - k, where the new relative energiey), - k/v/k? are
conjugate to the new “relative times.”

Itis of interest to notice that these new “relative times” are linear combinations
of the old ones with coefficients that are analytic functions of the momenta; the
reader will check it, using (25)(26)(42) and (49)(36)(37).

After reduction, the three-body kinematics has no more degrees of freedom
than in the nonrelativistic problem. But we must keep in mind that this picture is
valid only insofar as we can revert to all the initial variables, which (at least for
equal masses) is ensured for moderately relativistic velocities.

The new variables/, introduced in this section will be referred to as the
reducible variables

5. HOW TO INTRODUCE INTERACTIONS

We can now consider the system (92), (29), and (30) as a starting point for
introducing mutual interactions.

To this end, we shall modify the “sum equation” (92) by a term which carries
interaction, whereas the “difference equations” (29) and (30) remain untouched.

Doing so we manage th& remains conserved, and keep assuming that its
eigenvalue is atime-like vectrtherefore, the factorization df given by formula
(31) remains valid and eliminates two degrees of freedom.

The interaction potential will be written in closed form in terms of the re-
ducible coordinateg),, yg, and all calculations will be carried out using these
variables.

Remark : Thereducible (momentum) coordinate§ gre rearranged as to form
the quantitiesP andy,.
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Adding interaction into (92) produces the dynamical equation
(32 m2c? — P2) W = DV + (18V + 6P2E)W (103)

Like in the free caseD is given by (17) andE is given by (93) in terms of
X = Yo, €).

The “difference equations” remain (29) and (30) like previously. Of course,
V cannot be chosen arbitrarily but it is not difficult to find a general admissible
form of V such that the dynamical equation (103) is compatible with (29) and (30).
Compatibility requires tha¥# commutes with the operators in the left-hand sides
of (29) and (30). For instance the interaction poterifanay depend ofZ,, 7,
andP?.

NaturallyV must be Poincarinvariant, which is realized by taking a function
of the various scalar products formed wit, Z;, P. Demanding that diago-
nalizesP* with eigenvalue&k®, with k - k > 0, we can in (103) replacg by ¥'.

Taking (29), (30), and (98) into account yields the reduced equation

(3Zm§— MZ) 2y =Q¢+181¢+M%C2rw (104)

where the reduced wave functigndepends only ok and on the space projections
Y5, ¥5. The only operators involved here are the projectignsy. Moreoverz’
arises inVv only.

Comparison with a standard problem of nonrelativistic quantum mechanics
becomes more easy in the rest frame, whggg?(= —(Z,)? and §)? = —(Y)?
etc.

Actually solving (104) differs from a nonrelativistic problem by the last term,
which involves the momenta but does not depend on the shape of the interaction
(and survives in the free-motion limit). Still this term depends on the total squared
mass.

For simplicity, we can consider an interaction such that

18V = a1U12(2,) + a23U23(Z; — 25) + a31U3z1(Z5) (105)

wherea,p are coupling constants atdl, arbitrary (but Poincar invariant) func-
tions. In this modelJ,, is independent frorg, etc., with cyclic permutation; the
formal input of our interaction consists in two-body potentials.

So (104) can be written as

<3Z mg - Mz) Czlﬂ =Dy + [Ollgulz(zlz) + (¥23U23(2,3 - 2’2)
. 6
+0l31U31(Zi°,)]W + Wﬁﬁ (106)
A special case
Up=(2) Uis=(2) Uxs=(Z-2) (107)
describes a three-boson harmonic oscillator.
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To handle Eq. (104) it is tempting to neglect its last term. Invoking the limit
of a large total momentuni? — oo), as done in Droz-Vincent (2002)does not
seem to permit a perturbation treatment (indeed the “small” parameter used in the
developments should be independent from the eigenvalue). We prefer to consider
developments in powers of &

5.1. Equal Masses

Assuming for simplicity that, = m, Eq. (104) becomes

6
(Om? — MAc?y = Dy + 18V Yy + VA (108)
Itwill be considered as an eigenvalue problemifby setting 6. = (M? — 9m?)c?.
As all masses are equal, thOis= I"(0) + O(1/c?). At first order in 2/c? we can
replacel’ by I'(0) andM? by 9m? in (108). Using the rest frame, we obtain
1
— 2 2
AY = [y2+Y3+y2'y3—3M]1ﬁ ~ omic2
Neglecting the last term yields the nonrelativistic limit (dividerbyand remember
that in our formulasy has dimension oP?).
Taking into account the contribution &f(0) permits to calculate the first
relativistic correction.

Ty (109)

5.2. Cluster Behavior

As pointed out by Sazdjian (1988, 1989) in any formulation of the dynamics
which makes explicit reference to total momentum, it is difficult to discuss cluster
separability. But it is reasonable to demand thatr#ueicecequation be in a sense
separable, in order to ensure a factorization of the internal wave function when
there are noninteracting clusters.

With this requirement in mind, we can already observe that the potential (105)
is formally separabléen terms of the variables' z

Butthe interpretation of eadbyy, as a two-body term runs into a complication:
there is no evidence that the varialalg exactly matches the cluster of particles
{1A}. A similar remark arises concerning the matchingzpf- z, with cluster
{23}.

The physical interpretation of the new configuration varialdgsis not
straightforward; they are relative variables since they commute Riithut they
suffer from this complication that the transformation formulas (25) mixwith
z3. Similarly (besides its dependence on total momentum) each new vagiable
depends not only og, (with the same label a) but also on gifs with b £ a.

3 Several coefficients in the expressionityD) written in that article must be corrected, see eq. (102)
in the present paper.
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But we can consider (91) on the momentum—-mass shell. At least for three
equal masses, the only occurrence of the velocity of light is through the product
Mc, so we obtain from (91)

% =2+ O(1/IMcl), 2 =2+ O(1/|Mc]) (110)
and, of coursez; — Z, = z3 — z, + O(1/|McJ). Thus, at leading order, the vari-
ablesZ, andZz, still coincide; so the potentialdyy, in the reduced Eq. (106) can
be approximately considered as two-body terms.

6. CONCLUDING REMARKS

As a first step, we succeeded in constructing three mass-shell constraints
describing thdree motionof three scalar particles. In contrast to the KG system,
these new wave equations permit to eliminate two degrees of freedom and get
reduced to a covariant equation with three-dimensional arguments.

Our approach rests on a transformation of the momenta involved in the orig-
inal KG system. In contradistinction to Sazdjian’s proposal and the homographic
relations that approximate it (Eq. (13) of Sazdjian, 1989, Eq. (4.15) of Sazdjian,
1988), our transformation from the old momenta to the new ones is explicitly given
by simplequadraticformulas. Inversion of these formulas is a fourth-degree alge-
braic problem which could be (in principle) discussed and solved in closed form;
due to its complexity, approximate developments are more efficient in practical
calculations. We used a couple of identities that are specific of the three-body case;
thus an extension of the present workite 3 is by no means straightforward.

In the present state of the art, equivalence of the new Eq. (97) with the sum
of the original KG equations is ensuratleastin a large sector characterized by
positive energies and conditions that involve the masses of the particles. When the
masses are not too different one from another (and in particular for equal masses),
these conditions amount to impose a bound on the velocities; but this bound is still
high enough to allow for the description of a relativistic regime.

The case of very large velocities requires further investigations. We gave here
sufficientconditions for an invertible transformation; it remains possible that a
more detailed discussion enlarges the present results. This analysis of free-body
kinematics provides us with a solid ground.

In a second step, we introducideractionin the “sum equation.” The model
obtained by this procedure respects Poiadaxariance. It remains covariantly
reducible to a wave equation with three-dimensional arguments; free motion is
recovered in the absence of interaction term.

The interaction ternV is formally cluster separable; actually formula (105)
is an ansatz which permits to combine two-body interactions without spoiling
the compatibility of the mass-shell constraints. True separability (in terms of the
original individual particle coordinates) is recovered only in the large-total-mass
limit.
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The two-body input of our model can be either phenomenological or moti-
vated by consideration of field theory.

When the three masses are equal, the velocity of light ariséshinough the
productM?c?, which facilitates the expansion in powers gti. At the first order,
the reduced equation is similar to a familiar Schroedinger equation supplemented
with a perturbation; insofar as the interaction is not explicitly energy-dependent
(orif this dependence is of higher order) one is left with a conventional eigenvalue
problem.

This situation provides a basis for eventually undertaking the study of cases
where the mass differences are not zero but still remain relatively small.

In the hope of applications to realistic bound states, like three-quark systems,
we plan an extension of the formalism to particles with spin. The contact with
more elaborated (but more complicated) theories, such as QED and QCD, will be
discussed in a future work.

APPENDIX A

In non-relativistic classical mechanics, canonical transformations are sym-
plectic diffeomorphisms of phase space. In general they dayfeiand p’s.

But a point transformation(in configuration space) simply transforms
among themselves, say = f(q). Then invariance of the symplectic form
(Goldstein, 1964) fully determinep’’s in terms ofg’s and p’s. When config-
uration space is flat, the and p variables play symmetric roles in the general
formulas of analytic mechanics, so there is no difficulty in defining as well point
transformations in momentum space (but this possibility is not usually considered
in textbooks). In this case, one transforms the momenta among themselves, and
one further determines the new variabtgsn terms ofq’s and p’s through the
requirement that the complete transformation law is canonical.

In the position (resp. momentum) representation of quantum mechanics, a
quantum analog of point transformations in configuration (resp. momentum) space
can be generated by an invertible transformation of the arguments of the wave func-
tion. This transformation amongnumbers obviously induces a transformation
among the multiplicative operators they define.

APPENDIX B

The polynomialR, (X) has an obvious double roat = 2/3 independent of
o, and providedr > —1, two other real roots given by (59) but, as noticed above,
the root X~ falls outside the admissible interval. All the curvBés= R,(X) are
tangent to theX axis at a fixed poinK = 2/3. Fore > —1 ande small enough,
the curve representinB(X) is four times cut by the straight ling = €2. In the
limit when e vanishes, two points of this intersection form the contact with the
X axis, and the other ones respectively reducktcand X .
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Foro = % we find thatX* ~ 0.15, which is admissible in the sense of (45),
(46), andRy 2(X) has a local maximum & = 1/3. This maximum is exactlﬁ.
Foro < % the local maximum excee(%s Makingo to decrease, we obtain lower
values ofX* (which vanishes withr).

Foro = —%, we obtain exactlX* = —%, and going down furtheris excluded
in view of (46).

Takingo in the open interval{3, 1,) and X restricted by—3 < X < %, it
turns out thatprovidede? < ;11, each curv&Z = R, (X) has two points in common
with the straight lineZ = €2 (other possible points correspondXooutside the
interval we consider). For vanishirg one of them has its horizontal coordinate
going to coincide withX™*, while the other point goes to the fixed contact point
X =2/3,Z = 0. This analysis shows that, with our restrictions, the fourth-degree
equationR, (X) = €2 has two real solutions, but only one of them reduceXto
in the limit wheree vanishes.
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